蓝淬燕和蓝带的区别,TLBB千淬神玉和百淬神玉差别是什么

1,TLBB千淬神玉和百淬神玉差别是什么

几率不同 你先用 百 洗到优秀 或杰出 然后用千 洗 便宜一些 而且效果不错
反正都是黑人,百岁失败多点。千岁稍微好点,我暗器洗完美洗啦6000多

TLBB千淬神玉和百淬神玉差别是什么

2,T10钢760水淬与860水淬的组织与性能有什么区别

在760℃时,这时钢的组织还没有完全奥氏体化,存在部分渗碳体,淬火后得到的马氏体数量就少些,在性能方面,硬度和强度就低些,但塑性和韧性好些, 在860℃时,这时钢的组织已经完全奥氏体化,淬火后,过冷奥氏体大部转变为马氏体,在性能方面,硬度和强度比760℃时要高,但塑性和韧性就差些。

T10钢760水淬与860水淬的组织与性能有什么区别

3,dnf分解出淬练的几率有多高

是的…但只要装备是紫的…差不多都会有淬炼的和强韧的冒险家灵魂
搞很多 但是9级的比低级的 分解出来的东西多 比如低级的分解出200个红色 高级的就可能出来300个
会吧
要紫装以上上才行
这跟分解机的等级没半毛钱关系,“分解出的材料是淬炼”的概率跟你人品挂钩(如果想出就出它也不会这么贵),“分解出的材料是淬炼”的数量跟你蓝装的等级有关也跟你人品有关,比如你分解个40的蓝武器,如果出淬炼也就那么两三几个,如果你分解的是60级的蓝装会给你的淬炼相比之下要多得多,我曾经在别人的低级分解机上分解出过11个淬炼。运气不好的话你拿一堆65级的蓝装去9级最高级分解机分不是平凡就是十几个有色小晶体

dnf分解出淬练的几率有多高

4,磨平导轨高频淬火与超音频淬火有什么区别

高频淬火指利用高频电流(30K-1000KHZ)使工件表面局部进行加热、冷却,获得表面硬化层的热处理方法。这种方法只是对工件一定深度的表面强化,而心部基本上保持处理前的组织和性能,因而可获得高强度,高耐磨性和高韧性的综合。又因是局部加热,所以能显著减少淬火变形,降减能耗。正是因为高频淬火拥有上述这些特点,因而在机械加工行业中广泛被采用。 超音频淬火 指工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000&ordm:C,而心部温度升高很小。 高频淬火与超音频淬火最主要的区别是在于振荡频率的不同,高频振荡频率高,淬硬层比较浅在1mm-1.5mm之间,超音频振荡频率较低一些,淬硬层在1.5-3mm左右,因此高频比较适合较细的轴表面淬火,而超音频就比较适合花键轴、齿轮轴等普遍的工件淬火,以及极大部分工件的透热。

5,淬硬性跟淬透性的区别取决于什么

淬透性:表示钢在一定条件下淬火时获得淬透层深度的能力,主要受奥氏体中的碳含量和合金元素的影响。 指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。 淬硬性:指钢在理想条件下淬火得到马氏体后所能达到的最高硬度 钢的淬透性是钢材能够被淬透的能力,又称可淬性。是以淬火后马氏体深度为淬透层深度。影响淬透性的因素是临界冷却速度。 凡是影响临界冷却速度的因素,都将影响钢的淬透性。过冷奥氏体稳定性元素含量越多,奥氏体实际晶粒度越粗大、成份越均匀,原始组织中碳化物越细小、分布越均匀,则过冷奥氏体的稳定性越大,有利于降低钢的临界冷却速度,提高钢的淬透性。 淬透性与淬硬性不是一个内容,其区别在于: 淬硬性又称可硬性,是钢淬火后所能达到的最高硬度。主要影响因素是钢的含碳量 硬度与淬硬性相关。 淬透性 淬透性(hardenability) 表示钢在一定条件下淬火时获得淬透层深度的能力,主要受奥氏体中的碳含量和合金元素的影响。 淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。即钢淬火时得到淬硬层深度大小的能力,它表示钢接受淬火的能力。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性是钢材本身所固有的属性,它只取决于其本身的内部因素,而与外部因素无关。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。 淬透性主要取决于其临界冷却速度的大小,而临界冷却速度则主要取决于过冷奥氏体的稳定性,影响奥氏体的稳定性主要是: 1.化学成分的影响 碳的影响是主要的,当C%小于1.2%时,随着奥氏体中碳浓度的提高,显著降低临界冷却速度,C曲线右移,钢的淬透性增大;当C%大于时,钢的冷却速度反而升高,C曲线左移,淬透性下降。其次是合金元素的影响,除钴外,绝大多数合金元素溶入奥氏体后,均使C曲线右移,降低临界冷却速度,从而提高钢的淬透性。 2.奥氏体晶粒大小的影响 奥氏体的实际晶粒度对钢的淬透性有较大的影响,粗大的奥氏体晶粒能使C曲线右移,降低了钢的临界冷却速度。但晶粒粗大将增大钢的变形、开裂倾向和降低韧性。 3.奥氏体均匀程度的影响 在相同冷度条件下,奥氏体成分越均匀,珠光体的形核率就越低,转变的孕育期增长,C曲线右移,临界冷却速度减慢,钢的淬透性越高。 4.钢的原始组织的影响 钢的原始组织的粗细和分布对奥氏体的成分将有重大影响。 5.部分元素,例如Mn,Si等元素对提高淬透性能起到一定作用,但同时也会对钢材带来其他不利的影响 淬硬性 淬硬性(hardening capacity) 指钢在淬火时能够获得的淬硬层硬度的能力,也就是获得马氏体的能力。不要和淬透性混淆,淬透性才是指获得淬硬层深度的能力。
淬透性:表示钢在一定条件下淬火的淬硬层深度。衡量各个不同钢种接受淬火能力。影响因素过冷奥氏体稳定性和临界冷却速淬硬性指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。主要取决于马氏体中的含碳量,碳含量越高,则钢的淬硬性越高。其他合金元素的影响比较小。淬透性才是指奥氏体化后的钢在淬火时获得马氏体的能力。其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布表示。
通俗点说,钢的淬硬性就是指钢在淬硬层获得硬度高低的程度,而淬透性就是钢在淬火后淬硬层的深浅程度。 钢的淬硬性主要与钢的含碳量及热处理工艺有关,而钢的淬透性主要与钢的化学成份及对应该钢种采取的热处理工艺有关。 麻烦采纳,谢谢!

6,淬火时 油淬和水淬有什么区别

水淬冷却快、但应力大,变形、开裂倾向大,一般用于淬透性差的碳钢。油淬冷却效温和,一般用于淬透性较好的合金钢。拓展资料:一、水淬以水作为淬火剂进行淬火,称为水淬。优点是在高温区(550℃~650℃)冷却较快,缺点是低温区(200℃~300℃)也冷却较快,易造成较大的组织应力。水淬是把高温物体放入水中,再烧红热,再放入水中,如此反复,可提高刚性。水淬的原理就是使1400℃左右的熔融物在从炉体流出时,用具有一定压力的水流喷射,使共骤然冶却而凝固并碎裂成细小的粒子,使熔融物的玻璃结构被固定下来,阻止氟磷酸钙结晶的复原。熔融物中氟和磷的含量较高以及碱度较高时,氟磷酸钙结晶复原要快一些, 因而水淬压力就要高一些;反之,合氟和磷较低以及碱度较低时,氟磷酸钙结晶复原要慢一些,因而水淬压力也就可以低一些。熔融物被水淬得愈细,冷却得就愈快,产品的枸溶率也就愈高;反之,粒子大,共表面虽然先冷,但内部冷得慢,产品枸溶率也就不高。二、火淬火焰淬火是一种用乙炔一氧火焰(最高温度达3100℃)或煤气一氧火焰(最高温度达2000℃)将工件表面快速加热,随后喷液(水或有机冷却液)冷却的一种表面淬火方法。一般常用乙炔-氧火焰表面淬火。火焰淬火始于19世纪初期。起初是依靠操作者的经验保证处理质量。随着技术的发展,人们设计和制造出用以淬硬曲轴、齿轮等零件曲面的专用淬火机床,从而扩大了火焰淬火的应用范围。后来,又出现配备有透焰测温装置、能自动控制温度的淬火机床,使火焰淬火有了新的发展。火焰淬火是为了奥氏体化,用可燃气体火掐作为加热热源的局部硬化工艺。适合通过火焰淬火置艺进行局部硬化的材料,必须有足够的含碳量(一般为0.4%)才能进行可硬化处理。由于这种工艺通常用于径具有低淬硬性的低合金钢或普通碳钢,因此加热到相变温度后的淬火一般是通过快速水淬完成的。淬火几乎是瞬时的。加热介质可以是氧一乙炔、氧一制造煤气、丙烷或其他任伺接有适当加热速率的燃气的混合。淬火温度与炉子淬火所要求的相同。火焰淬火区的深度从离表面1/32in(0.8mm)到整个截面的范围内变化。通常用于火焰淬火的钢是含碳量0.40~0.95%的普通碳钢和低合金钢。高合金钢例如马氏体不锈钢和工具钢有时也采用局部硬化方法,但中碳钢用得更多些。火焰淬火时,高淬硬性钢有较大的开裂倾向。通过在淬火前预热零件(大约300°F;149℃)和用油或水溶性有机液淬火可降低低合金钢和工具钢的开裂倾向。然而,油淬火具有易燃的危险,使这种工艺不能广泛采用。参考链接:百度百科-水淬百度百科-火焰淬火
水淬和油淬的区别:1、水淬冷却快、但应力大,变形、开裂倾向大,一般用于淬透性差的碳钢。水淬是把高温物体放入水中,再烧红热,再放入水中,如此反复,可提高刚性。以水作为淬火剂进行淬水,称为水淬。2、油淬冷却效温和,一般用于淬透性较好的合金钢。淬火处理一般多利用水、油或低温盐浴来做此冷却,但有时亦可利用风扇加速空气冷却来达到相同目的。 其中采用油来冷却的就叫油淬。扩展资料淬火是把钢铁加热到奥氏体化以后,快速冷却,以获得马氏体或贝氏体组织。通常由水淬和油淬。具体的淬火方式,需要根据折叠锻打采用的材料,以及刀剑形式等因素来决定。使用的设备包括煅烧炉,钳子,淬火桶,水或者油,耐火手套,烤箱。淬火的手法多种多样,可以局部淬火,整体淬火,表面淬火,寒淬,风淬,透淬,喷射淬,分层淬火等等。许多老铁匠还有自己秘不外传的淬火秘诀。我一般是整体淬火,这种淬火的弊端是由于应力的存在,刀剑容易变形弯曲或者断裂,需要严格控制好火候、时机和手法。参考资料来源: 水淬-百度百科 、 火焰淬火-百度百科
淬火处理,主要是指将钢材从高温奥氏体区急速冷却下来以获得某一特定低温组织,例如马氏体、贝氏体等。一般多利用水、油或低温盐浴来做此冷却,但有时亦可利用风扇加速空气冷却来达到相同目的。油淬就是采用油来冷却的就叫油淬。油淬冷却效温和,一般用于淬透性较好的合金钢。水淬是指采用水来冷却就叫水淬。优点是在高温区(550℃~650℃)冷却较快,缺点是低温区(200℃~300℃)也冷却较快,易造成较大的组织应力。水淬是把高温物体放入水中,再烧红热,再放入水中,如此反复,可提高刚性。水淬冷却快、但应力大,变形、开裂倾向大,一般用于淬透性差的碳钢。水淬出现裂纹是由于内部应力引起破碎――玻璃未经正式退火或淬火发生破碎拓展资料:淬火:钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。参考资料:百度百科-淬火
水淬时会有蒸汽膜阶段,一定条件下会出现淬火硬度不均匀的现象
淬炉与气淬炉的优缺点 1、常规炉型、同等功率下,油炉的适应面要比气淬炉要宽,气淬炉对直径教大及淬透性差的钢材适用面窄。2、同归格(装炉量)的炉子,气淬的成本比油淬的要高,高的原因在于氮气比油的消耗大、工作周期更长、料框及炉内元件在经常的冷热交换下更易损耗。3、带扩散泵的气淬炉可做高速钢、铍铜、不锈钢、钛合金等高价值产品,且可用于真空回火。若是小热处理厂,建议第一台购置油淬炉,气淬则更适合后续购买及装点门面。只是从头到尾那真空炉的成本不知比油要贵到多少了?@_@具体问题具体分析,气淬冷却慢变形小,油淬反之.@_@那要看什么材料,气淬比较干净,油淬一般使用比较多,我很想和大家交流心得我的qq号是215886856@_@不同金属有不同的淬火方法啊 看是什么样子的金属@_@请问cr12能用气淬火吗.气淬火后硬度能达多少@_@我试过真空处理时,厚度在10mm以下的,充4公斤氮气硬度可达63hrc,在达到淬透的情况下,尽量采用气淬好点.应力小,变形少,干净@_@还与直径大小有关,较粗大的工件气淬比较困难@_@那么就是说cr12用气淬火跟本就淬不到hrc60度了@_@cr12油淬好,cr12油淬变形不大是特点优势,我不知道能用什么压缩气能把cr12淬到hrc60以上的!
冷却速度从大到小的排序依次是:盐类淬火介质-水溶性淬火介质(如PAG)-淬火油 从大的类别上讲是这样的 查看原帖>>

7,淬火 回火 正火 退火 分别是什么都分别用在那些上面知道的告诉我

淬火   Hardening or Quenching  cui huǒ  (行业内,淬读"zhàn"音,即读“zhàn huǒ”)  钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体[1]化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。  通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。  淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。  淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织(或贝氏体组织)。  钢淬火工艺最早的应用见于河北易县燕下都遗址出土的战国时代的钢制兵器。  淬火工艺最早的史料记载见于《汉书.王褒传》中的“清水焠其峰”。  “淬火”在专业文献上,人们写的是“淬火”,而读起来又称“蘸火”。“蘸火”已成为专业口头交流的习用词,但文献中又看不到它的存在。也就是说,淬火是标准词,人们不读它,“蘸火”是常用词,人们却不写它,这是我国文字中不多见的现象。  淬火是“蘸火”的正词,淬火的古词为蔯火,本义是灭火,引申义是“将高温的物体急速冷却的工艺”。“蘸火”是冷僻词,属于现代词,是文字改革后出现的产物,“蘸”字本义与淬火无关。“蘸火”本词为“湛火”,“湛”字读音同“蘸”,而其字形又与水、火有关,符合“水与火合为蔯”之意,字义与“淬火”相通。“湛火”为本词,“蘸火”则为假借词。  淬火  将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。钢淬火的目的就是为了使它的组织全部或大部转变为马氏体,获得高硬度,然后在适当温度下回火,使工件具有预期的性能。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。  淬火效果的重要因素,淬火工件硬度要求和检测方法:  淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计,测试HRC硬度。淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。   在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。  由于淬火后金属硬而脆,产生的表面残余应力会造成冷裂纹,回火可作为在不影响硬度的基础上,消除冷裂纹的手段之一。  淬火对厚度、直径较小的零件使用比较合适,对于过大的零件,淬火深度不够,渗碳也存在同样问题,此时应考虑在钢材中加入铬等合金来增加强度。   淬火是钢铁材料强化的基本手段之一。钢中马氏体是铁基固溶体组织中最硬的相(表1),故钢件淬火可以获得高硬度、高强度。但是,马氏体的脆性很大,加之淬火后钢件内部有较大的淬火内应力,因而不宜直接应用,必须进行回火。  表1钢中铁基固溶体的显微硬度值  淬火工艺在现代机械制造工业得到广泛的应用。机械中重要零件,尤其在汽车、飞机、火箭中应用的钢件几乎都经过淬火处理。为满足各种零件干差万别的技术要求,发展了各种淬火工艺。如,按接受处理的部位,有整体、局部淬火和表面淬火;按加热时相变是否完全,有完全淬火和不完全淬火(对于亚共析钢,该法又称亚临界淬火);按冷却时相变的内容,有分级淬火,等温淬火和欠速淬火等。  工艺过程 包括加热、保温、冷却3个阶段。下面以钢的淬火为例,介绍上述三个阶段工艺参数选择的原则。     加热温度 以钢的相变临界点为依据,加热时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。碳素钢的淬火加热温度范围如图1所示。 由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。亚共析钢加热温度为Ac3温度以上30~50℃。从图上看,高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变成奥氏体,即为不完全(或亚临界)淬火。过共析钢淬火温度为Ac1温度以上30~50℃,这温度范围处于奥氏体与渗碳体(A+C)双相区。因而过共析钢的正常的淬火仍属不完全淬火,淬火后得到马氏体基体上分布渗碳体的组织。这-组织状态具有高硬度和高耐磨性。对于过共析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。淬火后,粗大马氏体组织使钢件淬火态微区内应力增加,微裂纹增多,零件的变形和开裂倾向增加;由于奥氏体碳浓度高,马氏体点下降,残留奥氏体量增加,使工件的硬度和耐磨性降低。常用钢种淬火的温度参见表2。  表2常用钢种淬火的加热温度  实际生产中,加热温度的选择要根据具体情况加以调整。如亚共析钢中碳含量为下限,当装炉量较多,欲增加零件淬硬层深度等时可选用温度上限;若工件形状复杂,变形要求严格等要采用温度下限。  保温时间 由设备加热方式、零件尺寸、钢的成分、装炉量和设备功率等多种因素确定。对整体淬火而言,保温的目的是使工件内部温度均匀趋于一致。对各类淬火,其保温时间最终取决于在要求淬火的区域获得良好的淬火加热组织。  加热与保温是影响淬火质量的重要环节,奥氏体化获得的组织状态直接影响淬火后的性能。-般钢件奥氏体晶粒控制在5~8级。  冷却方法 要使钢中高温相——奥氏体在冷却过程中转变成低温亚稳相——马氏体,冷却速度必须大于钢的临界冷却速度。工件在冷却过程中, 表面与心部的冷却速度有-定差异,如果这种差异足够大,则可能造成大于临界冷却速度部分转变成马氏体,而小于临界冷却速度的心部不能转变成马氏体的情况。为保证整个截面上都转变为马氏体需要选用冷却能力足够强的淬火介质,以保证工件心部有足够高的冷却速度。但是冷却速度大,工件内部由于热胀冷缩不均匀造成内应力,可能使工件变形或开裂。因而要考虑上述两种矛盾因素,合理选择淬火介质和冷却方式。  冷却阶段不仅零件获得合理的组织,达到所需要的性能,而且要保持零件的尺寸和形状精度,是淬火工艺过程的关键环节。  分类 可按冷却方式分为单液淬火、双液淬火、分级淬火和等温淬火等。冷却方式的选择要根据钢种、零件形状和技术要求诸因素。  单液淬火 将工件加热后使用单一介质冷却,最常使用的有水和油两种,其变、温曲线如图2中的曲线1。为防止工件过大的变形和开裂,工件不宜在介质中冷至室温,可在200~300℃出水或油,在空气中冷却。单液淬火操作简单易行,广泛用于形状简单的工件。有时将工件加热后,先在空气中停留-段时间,再淬入淬火介质中,以减少淬冷过程中工件内部的温差,降低工件变形与开裂的倾向,称为预冷淬火。  图2 各种淬火冷却的变温曲线示意图 曲线1-单液淬火;曲线2-双液淬火; 曲线3-分级淬火;曲线4-等温淬火  双液淬火 工件加热后,先淬入水或其他冷却能力强的介质中冷却至400℃左右,迅速转入油或其他冷却能力较弱的介质中冷却。变温曲线如图2中曲线2。所谓“水淬油冷”法使用得相当普遍。先淬入冷却能力强的介质,工件快速冷却可避免钢中奥氏体分解。低温段转入冷却能力较弱的介质可有效减少工件的内应力,降低工件变形和开裂倾向。本工艺的关键是如何控制在水中停留的时间。根据经验,按工件厚度计算在水中停留的时间,系数为O.2~O.3s/mm,碳素钢取上限,合金钢取下限。这种工艺适用于碳素钢制造的中型零件(直径10~40mm)和低合金钢制造的较大型零件。   分级淬火 工件加热后,淬入温度处于马氏体点(ms)附近的介质(可用熔融硝盐、碱或热油)中,停留一段时间,然后取出空冷。变温曲线如图2中曲线3。分级温度应选择在该钢种过冷奥氏体的稳定区域,以保证分级停留过程中不发生相变。对于具有中间稳定区(“两个鼻子”)型TTT曲线的某些高合金钢,分级温度也可选在中温(400~600℃)区。分级的目的是使工件内部温度趋于一致,减少在后续冷却过程中的内应力及变形和开裂倾向。此工艺适用于形状复杂,变形要求严格的合金钢件。高速钢制造的工具淬火多用此工艺。  等温淬火 工件加热后,淬入温度处于该钢种下贝氏体(B下)转变范围的介质中,保温使之完成下贝氏体转变,然后取出空冷,变温曲线如图2中的曲线4。等温温度对下贝氏体性能影响较大,温度控制要求严格。常用钢种的等温温度和时间列于表3。等温淬火工艺特别适用于要求变形小、形状复杂,尤其同时还要求较高强韧性的零件。  表3 中国常用钢种的等温温度和等温时间
钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。 退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

推荐阅读

热文